High-efficiency InGaN red micro-LEDs for visible light communication
In this study, we present a high-efficiency InGaN red micro-LED fabricated by the incorporation of superlattice structure, atomic layer deposition passivation, and a distributed Bragg reflector, exhibiting maximum external quantum efficiency of 5.02% with a low efficiency droop corresponding to an injection current density of 112 A∕cm2. The fast carrier dynamics in the InGaN is characterized by using time-resolved photoluminescence, which is correlated to a high modulation bandwidth of 271 MHz achieved by a 6× 25-μm-sized micro-LED array with a data transmission rate of 350 Mbit/s at a high injection current density of 2000 A∕cm2. It holds great promise for full-color micro-displays as well as high-speed visible light communication applications based on monolithic InGaN micro-LED technologies.
About
In this study, we present a high-efficiency InGaN red micro-LED fabricated by the incorporation of superlattice structure, atomic layer deposition passivation, and a distributed Bragg reflector, exhibiting maximum external quantum efficiency of 5.02% with a low efficiency droop corresponding to an injection current density of 112 A∕cm2. The fast carrier dynamics in the InGaN is characterized by using time-resolved photoluminescence, which is correlated to a high modulation bandwidth of 271 MHz achieved by a 6× 25-μm-sized micro-LED array with a data transmission rate of 350 Mbit/s at a high injection current density of 2000 A∕cm2. It holds great promise for full-color micro-displays as well as high-speed visible light communication applications based on monolithic InGaN micro-LED technologies.